4.6 Article

Nano-TiO2/polyurethane composites for antibacterial and self-cleaning coatings

Journal

NANOTECHNOLOGY
Volume 23, Issue 42, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0957-4484/23/42/425606

Keywords

-

Funding

  1. Canadian Natural Science and Engineering Research Council (NSERC)

Ask authors/readers for more resources

Grafting from polymerization was used to synthesize nano-titania/polyurethane (nTiO(2)/polyurethane) composite coatings, where nTiO(2) was chemically attached to the backbone of the polyurethane polymer matrix with a bifunctional monomer, 2,2-bis(hydroxymethyl) propionic acid (DMPA). This bifunctional monomer can coordinate to nTiO(2) through an available -COOH group, with two available hydroxyl groups that can react with diisocyanate terminated pre-polyurethane through step-growth polymerization. The coordination reaction was monitored by FTIR and TGA, with the coordination reaction found to follow first order kinetics. After step-growth polymerization, the polyurethane nanocomposites were found to be stable on standing with excellent distribution of Ti in the polymer matrix without any significant agglomeration compared to simple physical mixtures of nTiO(2) in the polyurethane coatings. The functionalized nTiO(2)-polyurethane composite coatings showed excellent antibacterial activity against gram-negative bacteria Escherichia coli; 99% of E. coli were killed within less than one hour under solar irradiation. Self-cleaning was also demonstrated using stearic acid as a model for 'dirt'.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available