4.6 Article

An improved measurement of dsDNA elasticity using AFM

Journal

NANOTECHNOLOGY
Volume 21, Issue 7, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0957-4484/21/7/075101

Keywords

-

Funding

  1. KIST
  2. National Research Council of Science & Technology (NST), Republic of Korea [2E21620] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

The mechanical properties of a small fragment (30 bp) of an individual double-stranded deoxyribonucleic acid (dsDNA) in water have been investigated by atomic force microscopy (AFM). We have stretched three systems including ssDNA, double-fixed dsDNA (one strand of the dsDNA molecules was biotinylated at the 3'-end and thiolated at the 5'-end, this was reversed for the other complementary strand) and single-fixed dsDNA (one strand of the dsDNA molecules was biotinylated at the 3'-end and thiolated at the 5'-end, whereas the other complementary strand was biotinylated at only the 5'-end). The achieved thiolation and biotinylation were to bind ds- or ssDNA to the gold surface and streptavidin-coated AFM tip, respectively. Analysis of the force versus displacement (F-D) curves from tip-DNA-substrate systems shows that the pull-off length (L-o) and stretch length (delta) from the double-fixed system were shorter than those observed in the ssDNA and the single-fixed system. The obtained stretch force (F-st) from the single-fixed dsDNA was much greater than that from the ssDNA even though it was about 10 pN greater than the one obtained in the double-fixed system. As a result, the Young's modulus of the double-fixed dsDNA was greater than that of the single-fixed dsDNA and the ssDNA. A more reliable stiffness of the dsDNA was observed via the double-fixed system, since there is no effect of the unpaired molecules during stretching, which always occurred in the single-fixed system. The unpaired molecules were also observed by comparing the stiffness of ssDNA and single-fixed dsDNA in which the end of one strand was left free.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available