4.6 Article

Stable Nafion-functionalized graphene dispersions for transparent conducting films

Journal

NANOTECHNOLOGY
Volume 20, Issue 46, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0957-4484/20/46/465605

Keywords

-

Funding

  1. National Basic Research Program [2005CB623605]
  2. National Natural Science Foundation of China [50602049]
  3. Science and Technology Commission of Shanghai Municipality [0852nm 01900, 08QA14073]
  4. Shanghai Institute of Ceramics [SCX200709]

Ask authors/readers for more resources

Nafion was used for the first time to aid in preparing stable graphene dispersions in mixed water/ethanol (1:1) solvents via the reduction of graphite oxide using hydrazine. The dispersion was characterized by ultraviolet-visible (UV-vis) spectra, transmission electron microscopy, zeta potential analysis, etc. It was found that for Nafion-to-graphene ratios higher than 5:1, graphene solutions with concentrations up to 1 mg ml(-1) and stabilities of over three months were obtained. It was proposed that the Nafion adsorbed onto the graphene by the hydrophobic interaction of its fluoro-backbones with the graphene layer and imparted stability by an electrosteric mechanism. Furthermore, transparent and conductive films were prepared using these highly stable Nafion-stabilized graphene dispersions. The prepared Nafion-graphene films possess smooth and homogeneous surfaces and the sheet resistance was as low as 30 k Omega/sq for a transmittance of 80% at 550 nm, which was much lower than for other graphene films obtained by chemical reduction. X-ray photoelectron spectroscopy and Raman spectroscopy confirmed the p-doping of the graphene by Nafion. It was expected that this p-doping effect, as well as the high dispersing ability of Nafion for graphene and the connection of the sp(2) domains by residual Nafion combined to produce good properties of the Nafion-graphene films.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available