4.6 Article

The thermal conductivity and thermal rectification of carbon nanotubes studied using reverse non-equilibrium molecular dynamics simulations

Journal

NANOTECHNOLOGY
Volume 20, Issue 11, Pages -

Publisher

IOP Publishing Ltd
DOI: 10.1088/0957-4484/20/11/115704

Keywords

-

Funding

  1. Deutsche Forschungsgemeinschaft (DFG)

Ask authors/readers for more resources

The thermal conductivity of single-walled and multi-walled carbon nanotubes has been investigated as a function of the tube length L, temperature and chiral index using non-equilibrium molecular dynamics simulations. In the ballistic-diffusive regime the thermal conductivity follows alpha L-alpha law. The exponent a is insensitive to the diameter of the carbon nanotube; alpha approximate to 0.77 has been derived for short carbon nanotubes at room temperature. The temperature dependence of the thermal conductivity shows a peak before falling at higher temperatures (> 500 K). The phenomenon of thermal rectification in nanotubes has been investigated by gradually changing the atomic mass in the tube-axial direction as well as by loading extra masses on the terminal sites of the tube. A higher thermal conductivity occurs when heat flows from the low-mass to the high-mass region.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available