4.6 Article

In vitro evaluation of the genotoxicity of a family of novel MeO-PEG-poly(D,L-lactic-co-glycolic acid)-PEG-OMe triblock copolymer and PLGA nanoparticles

Journal

NANOTECHNOLOGY
Volume 20, Issue 45, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0957-4484/20/45/455102

Keywords

-

Funding

  1. National Science Foundation of China [30430770]
  2. National Basic Research Program of China [2007CB935801]

Ask authors/readers for more resources

Despite the booming development of nanoparticle materials for pharmaceutical applications, studies on their genotoxicity are few. In our previous efforts to develop an intravenous nanoparticle material, a family of novel monomethoxy(polyethyleneglycol)-poly(D, L-lactic-co-glycolic acid)-monomethoxy (PELGE) polymers was synthesized. The cytotoxicity and genotoxicity of nine kinds of selected blank PELGE and PLGA (poly(D,L-lactic and glycolic acid)) nanoparticles were evaluated using methyl thiazolyl tetrazolium (MTT), micronucleus (MN) and sister chromatid exchange (SCE) assays with or without the addition of a metabolic activation system (S9 mix), using Chinese hamster ovary (CHO) cells. The cytotoxicity of nanoparticles exhibited a dose-dependent response, with a concentration of 5 mg ml(-1) being the turning point. The frequencies of MN observed in samples treated with various nanoparticles were not statistically different from those seen in the negative controls in the presence or absence of the S9 mix. Also, no cell cycle delay was observed. The numbers of SCE per cell observed in samples treated with five kinds of PELGE nanoparticles were significantly greater than those found in the negative controls with or without the S9 mix. The discrepancies found in the two assays suggest that the five kinds of nanoparticles may produce only a weakly clastogenic response.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available