4.6 Article

Understanding effects of molecular adsorption at a single-wall boron nitride nanotube interface from density functional theory calculations

Journal

NANOTECHNOLOGY
Volume 20, Issue 35, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0957-4484/20/35/355705

Keywords

-

Ask authors/readers for more resources

In this paper, we explored computationally the feasibility of modulating the bandgap in a single-wall BN nanotube (BNNT) upon noncovalent adsorption of organic molecules, combined with the application of a transverse electric field. Effects of analytes' physisorption on the surface of BNNTs regarding structural and electronic properties were delineated. Relatively large binding energies were calculated, however, with minimal perturbation of the structural framework. Electronic structure calculations indicated that the bandgap of BNNTs can be modified by weak adsorption due to the presence of adsorbate states in the gap of the host system. Furthermore, we have shown that the application of a transverse electric field can tune the bandgap by shifting adsorbate states, consistent with calculated current-voltage characteristics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available