4.6 Article

Low temperature N,N-dimethylformamide-assisted synthesis and characterization of anatase-rutile biphasic nanostructured titania

Journal

NANOTECHNOLOGY
Volume 20, Issue 12, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0957-4484/20/12/125604

Keywords

-

Funding

  1. Spanish National Plan of Research [CTQ2005-02808/PPQ]

Ask authors/readers for more resources

Anatase and rutile biphasic nanostructured titania (TiO2) has been synthesized via hydrolysis of titanium tetraisopropoxide in an aqueous solution of hydrobromic acid (HBr) and N,N-dimethylformamide (DMF) at 80 degrees C for 16 h. The presence of DMF, which was partially hydrolyzed during the process, determined the formation of a biphasic material. Powder x-ray diffraction showed the presence of both anatase and rutile titania phases in a ratio of approx. 1:1. Transmission electron microscope analysis showed that rutile was present as radial flower-like nanorods, which were surrounded by anatase spherical nanoparticles of 5 nm diameter. Low temperature nitrogen adsorption-desorption analysis showed the characteristic hysteresis loop of a mesoporous material. Specific surface area reached a value of 120 m(2) g(-1) and the average pore diameter was 50 angstrom. X-ray photoelectron spectroscopic analysis revealed that interstitial nitrogen was incorporated (0.35 at.%) during the annealing process. According to ultraviolet (UV)-visible diffuse reflectance spectroscope characterization, the N-doping caused a bandgap reduction from 3.0 to 2.9 eV. Photocatalytic activity of the material was tested for the degradation of methylene blue, methyl orange and 4-nitrophenol under near-UV and visible light radiation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available