4.6 Article

Silicon quantum dot/crystalline silicon solar cells

Journal

NANOTECHNOLOGY
Volume 19, Issue 24, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0957-4484/19/24/245201

Keywords

-

Ask authors/readers for more resources

Silicon (Si) quantum dot (QD) materials have been proposed for 'all-silicon' tandem solar cells. In this study, solar cells consisting of phosphorus-doped Si QDs in a SiO2 matrix deposited on p-type crystalline Si substrates (c-Si) were fabricated. The Si QDs were formed by alternate deposition of SiO2 and silicon-rich SiOx with magnetron co-sputtering, followed by high-temperature annealing. Current tunnelling through the QD layer was observed from the solar cells with a dot spacing of 2 nm or less. To get the required current densities through the devices, the dot spacing in the SiO2 matrix had to be 2 nm or less. The open-circuit voltage was found to increase proportionally with reductions in QD size, which may relate to a bandgap widening effect in Si QDs or an improved heterojunction field allowing a greater split of the Fermi levels in the Si substrate. Successful fabrication of (n-type) Si QD/(p-type) c-Si photovoltaic devices is an encouraging step towards the realization of all-silicon tandem solar cells based on Si QD materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available