4.6 Article

The effects of contacts and ambipolar electrical transport in nitrogen doped multiwall carbon nanotubes

Journal

NANOTECHNOLOGY
Volume 19, Issue 8, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0957-4484/19/8/085202

Keywords

-

Ask authors/readers for more resources

The electrical transport properties of pristine single wall carbon nanotubes (SWCNTs) and lower nitrogen content doped multiwall carbon nanotubes (MWCNTs) (lower than in the experiments of Xiao et al (2005 J. Am. Chem. Soc. 127 8614)) in contact with Au and Pt were studied. Compared with pristine SWCNTs, the Fermi level of the lower nitrogen content doped MWCNTs also moved to the valence band edge with the contact metal's work function increasing. In contrast to Derycke et al's results (2002 Appl. Phys. Lett. 80 2773), the lower nitrogen content doped MWCNTs exhibited ambipolar behavior, and increasing the doping level led to a reduction of the Schottky barrier height of electrons. Consistent with theoretical calculations, the results support the opinion that the degree of Fermi level pinning is minor for doped carbon nanotubes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available