4.3 Article

Studies on Preparation of Photosensitizer Loaded Magnetic Silica Nanoparticles and Their Anti-Tumor Effects for Targeting Photodynamic Therapy

Journal

NANOSCALE RESEARCH LETTERS
Volume 4, Issue 5, Pages 400-408

Publisher

SPRINGEROPEN
DOI: 10.1007/s11671-009-9254-5

Keywords

Targeting photodynamic therapy; Photosensitizer; Silica; Magnetic nanoparticles; Tumor

Funding

  1. National Natural Science Foundation of China [30070862, 30271534]
  2. Shanghai Municipal Foundation [05ZR14002, 06PJ14001, 064319020]

Ask authors/readers for more resources

As a fast developing alternative of traditional therapeutics, photodynamic therapy (PDT) is an effective, noninvasive, nontoxic therapeutics for cancer, senile macular degeneration, and so on. But the efficacy of PDT was compromised by insufficient selectivity and low solubility. In this study, novel multifunctional silica-based magnetic nanoparticles (SMNPs) were strategically designed and prepared as targeting drug delivery system to achieve higher specificity and better solubility. 2,7,12,18-Tetramethyl-3,8-di-(1-propoxyethyl)-13,17-bis-(3-hydroxypropyl) porphyrin, shorted as PHPP, was used as photosensitizer, which was first synthesized by our lab with good PDT effects. Magnetite nanoparticles (Fe3O4) and PHPP were incorporated into silica nanoparticles by microemulsion and sol-gel methods. The prepared nanoparticles were characterized by transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and fluorescence spectroscopy. The nanoparticles were approximately spherical with 20-30 nm diameter. Intense fluorescence of PHPP was monitored in the cytoplasm of SW480 cells. The nanoparticles possessed good biocompatibility and could generate singlet oxygen to cause remarkable photodynamic anti-tumor effects. These suggested that PHPP-SMNPs had great potential as effective drug delivery system in targeting photodynamic therapy, diagnostic magnetic resonance imaging and magnetic hyperthermia therapy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available