4.8 Article

Highly efficient charge transfer through a double Z-scheme mechanism by a Cu-promoted MoO3/g-C3N4 hybrid nanocomposite with superior electrochemical and photocatalytic performance

Journal

NANOSCALE
Volume 10, Issue 13, Pages 5950-5964

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7nr09049h

Keywords

-

Funding

  1. SERB [EMR/2016/000606]

Ask authors/readers for more resources

Herein, a novel Cu-MoO3/g-C3N4 hybrid nanocomposite was successfully synthesized by a two-step strategy of one-pot pyrolysis followed by the impregnation method. The structure, phase, morphology and electronic environment of MoO3, g-C3N4 and Cu in the composite were determined by various characterization methods. The oxygen vacancies of MoO3 were ascertained by UV-DRS, Raman, and XPS analysis. The formation of the heterostructure was characterised by electrochemical measurements. The photocatalytic performance of the composite was investigated by the water reduction reaction and the reduction of an important inorganic pollutant, Cr(VI). In the presence of Cu NPs, the H-2 evolution of the MoO3/g-C3N4 hybrid was found to be 652 mu mol h(-1) with an apparent energy conversion efficiency of 13.46%, and up to 95% of Cr(VI) was reduced using citric acid as a hole scavenger. The remarkably enhanced photocatalytic performance was attributed to the combined effect of the double Z-scheme mechanism and defective MoO3. The in situ formation process of the MoO3/g-C3N4 hybrid followed a direct Z-scheme charge transfer by generating a great number of defects at the solid-solid interface, similar to that of a conductor, and offered low electrical resistance, whereas loading of Cu NPs built up an indirect Z-scheme charge transfer to establish the double Z-scheme charge transfer mechanism. This hybrid material produces a photocurrent density of 12.1 mA cm(-2), in good agreement with the photo-catalytic activity. This study highlights the facilitation effect of MoO3 due to oxygen vacancies and charge transfer through the double Z-scheme mechanism to open up a new window in the field of 2D nanostructured photocatalytic materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available