4.8 Article

Enhanced visible-light photocatalytic activity of g-C3N4/Zn2GeO4 heterojunctions with effective interfaces based on band match

Journal

NANOSCALE
Volume 6, Issue 5, Pages 2649-2659

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3nr06104c

Keywords

-

Funding

  1. National Natural Science Foundation of China [21173131]
  2. 973 Program of China [2009CB930103, 2010CB933504]
  3. Independent Innovation Foundation of Shandong University [2012TS212]
  4. Taishan Scholar Project of Shandong Province
  5. Graduate Independent Innovation Foundation of Shandong University [yzc12118]

Ask authors/readers for more resources

Fabricating heterojunction photocatalysts is an important strategy for speeding up the separation rate of photogenerated charge carriers, which is attracting greater interest. However, the choice of three factors, individual materials, band offsets, and effective interfaces, is still important for fabricating efficient heterojunction photocatalysts. Herein, efficient g-C3N4/Zn2GeO4 photocatalysts with effective interfaces were designed by controlling the surface charges of the two individual materials inside the same aqueous dispersion medium, making use of the electrostatic attraction between oppositely charged particles. The g-C3N4/Zn2GeO4 heterojunction with opposite surface charge (OSC) showed higher visible-light photocatalytic activity for degradation of methylene blue than those of pure g-C3N4, pure Zn2GeO4, and the g-C3N4/Zn2GeO4 with identical surface charge (ISC). The investigation of the light absorption spectrum, adsorption ability, and photocurrent responses revealed that the improved separation of photogenerated carriers was the main reason for the enhancement of the OSC g-C3N4/Zn2GeO4 sample's photocatalytic activity. By combining with theoretical calculations, we investigated the microscopic mechanisms of interface interaction and charge transfer between g-C3N4 and Zn2GeO4. The photogenerated electrons in the g-C3N4 N 2p states directly excited into the Zn 4s and Ge 4s hybrid states of Zn2GeO4. The strategy of designing and preparing a g-C3N4/Zn2GeO4 composite catalyst in this work is very useful for fabricating other efficient heterojunction photocatalysts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available