4.8 Article

Multifunctional Fe3O4@TiO2@Au magnetic microspheres as recyclable substrates for surface-enhanced Raman scattering

Journal

NANOSCALE
Volume 6, Issue 11, Pages 5971-5979

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4nr00975d

Keywords

-

Funding

  1. National Natural Science Foundation of China [21236003, 21206042, 20925621, 21176083]
  2. Basic Research Program of Shanghai [13NM1400700, 13NM1400701]
  3. Fundamental Research Funds for the Central Universities

Ask authors/readers for more resources

Herein, we demonstrate the design and fabrication of multifunctional triplex Fe3O4@TiO2@Au core-shell magnetic microspheres (MSs), which show excellent surface enhanced Raman scattering (SERS) activity with high reproducibility and stability. In addition, due to their excellent catalytic properties, the as-prepared Fe3O4@TiO2@Au magnetic MSs can clean themselves by photocatalytic degradation of target molecules adsorbed onto the substrate under irradiation with visible light, and can be re-used for several cycles with convenient magnetic separability. The influence of the size and distribution of Au nanoparticles (NPs) on the Fe3O4@TiO2 beads is investigated. The optimized samples employing Au NPs of 15 nm size and an areal density of about 2120 Au NPs on every MS show the best SERS activity and recyclable performance. The experimental results show that these magnetic MSs indicate a new route in eliminating the 'single-use' problem of traditional SERS substrates and exhibit their applicability as analytical tools for the detection of different molecular species.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available