4.8 Article

Superior lithium storage in a 3D macroporous graphene framework/SnO2 nanocomposite

Journal

NANOSCALE
Volume 6, Issue 14, Pages 7817-7822

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4nr01493f

Keywords

-

Funding

  1. National Natural Science Foundation of China [21171015, 21373195]
  2. 1000 plan from the Chinese government
  3. program for New Century Excellent Talents in University (NCET)
  4. Fundamental Research Funds for the Central Universities [WK2060140014, WK2060140016]

Ask authors/readers for more resources

A three-dimensional (3D) interconnected graphene framework (GF)based SnO2 nanocomposite (3D SnO2/GFs) was prepared using self-assembly of polystyrene (PS)@SnO2 nanospheres and graphene oxide (GO) nanosheets under suitable pH conditions, followed by a thermal treatment. The electroactive material (SnO2) is anchored to the wall of electrochemically and ionically conductive 3D interconnected GFs. When used as anodes for LIBs, the 3D SnO2/GFs deliver an excellent reversible capacity (1244 mA h g(-1) in 50 cycles at 100 mA g(-1)) and outstanding rate capability (754 mA h g(-1) in 200 cycles at 1000 mA g(-1)). The ultra-small size of SnO2 (sub 10 nm) and dimensional confinement of SnO2 nanoparticles by the wall of GFs limit the volume expansion upon lithium insertion, and the 3D interconnected porous structures serve as buffered spaces during charge-discharge and result in superior electrochemical performance by facilitating the electrolyte to contact the entire nanocomposite materials and reduce lithium diffusion length in the nanocomposite.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available