4.8 Article

Engineering electronic properties of layered transition-metal dichalcogenide compounds through alloying

Journal

NANOSCALE
Volume 6, Issue 11, Pages 5820-5825

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4nr00177j

Keywords

-

Funding

  1. U.S. Army Research Office MURI Grant [W911NF-11-1-0362]
  2. Department of Energy, BES Grant [ER46598]
  3. NSF [OCI-1053575, TG-DMR100029, OCI-0959097]

Ask authors/readers for more resources

Binary alloys present a promising venue for band gap engineering and tuning of other mechanical and electronic properties of materials. Here we use the density-functional theory and cluster expansion to investigate the thermodynamic stability and electronic properties of 2D transition metal dichalcogenide (TMD) binary alloys. We find that mixing electron-accepting or electron-donating transition metals with 2D TMD semiconductors leads to degenerate p- or n-doping, respectively, effectively rendering them metallic. We then proceed to investigate the electronic properties of semiconductor-semiconductor alloys. The exploration of the configurational space of the 2D molybdenum-tungsten disulfide (Mo1-xWxS2) alloy beyond the mean field approximation yields insights into anisotropy of the electron and hole effective masses in this material. The effective hole mass in the 2D Mo1-xWxS2 is nearly isotropic and is predicted to change almost linearly with the tungsten concentration x. In contrast, the effective electron mass shows significant spatial anisotropy. The values of the band gap in 2D Mo1-xWxS2 and MoSe(2(1-x))AS(2x) are found to be configuration-dependent, exposing the limitations of the mean field approach to band gap analysis in alloys.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available