4.8 Article

Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation

Journal

NANOSCALE
Volume 6, Issue 3, Pages 1879-1889

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3nr04941h

Keywords

-

Funding

  1. National Natural Science Foundation of China [20975042, 21175051]
  2. Fundamental Research Funds for the Central Universities [2010PY009, 2010PY139]
  3. Natural Science Foundation of Hubei Province Innovation Team [2011CDA115]

Ask authors/readers for more resources

To understand the interaction mechanism between graphene oxide (GO) and typical phytopathogens, a particular investigation was conducted about the antimicrobial activity of GO against two bacterial pathogens (P. syringae and X. campestris pv. undulosa) and two fungal pathogens (F. graminearum and F. oxysporum). The results showed that GO had a powerful effect on the reproduction of all four pathogens (killed nearly 90% of the bacteria and repressed 80% macroconidia germination along with partial cell swelling and lysis at 500 mu g mL(-1)). A mutual mechanism is proposed in this work that GO intertwinds the bacteria and fungal spores with a wide range of aggregated graphene oxide sheets, resulting in the local perturbation of their cell membrane and inducing the decrease of the bacterial membrane potential and the leakage of electrolytes of fungal spores. It is likely that GO interacts with the pathogens by mechanically wrapping and locally damaging the cell membrane and finally causing cell lysis, which may be one of the major toxicity actions of GO against phytopathogens. The antibacterial mode proposed in this study suggests that the GO may possess antibacterial activity against more multi-resistant bacterial and fungal phytopathogens, and provides useful information about the application of GO in resisting crop diseases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available