4.8 Article

Temperature effect on the binder-free nickel copper oxide nanowires with superior supercapacitor performance

Journal

NANOSCALE
Volume 6, Issue 21, Pages 12981-12989

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4nr04192e

Keywords

-

Funding

  1. Singapore MOE Tier 2 grant [R-284-000-125-112]

Ask authors/readers for more resources

Although the use of nickel oxide in supercapacitor electrodes has been reported extensively, the effect of incorporating copper in the binary compound is not known. Arrays of nickel copper oxide nanowires on the current collector via a simple and industrially compatible route have been successfully synthesized. A systematic study on the effect of temperature is also presented. Strikingly, through conductivity modification and binder-free growth, the as-grown nanowires show high specific capacitance (2.24 F cm(2) at 10 mA; 1955 F g(-1) at 1 mV s(-1)), good rate capability (still 2.18 F cm(2) at 50 mA, 1542 F g(-1) at 50 mV s(-1)), and excellent cycle life (90% after 1000 cycles at a high charging-discharging rate 10 A g(-1)). An asymmetric full cell is then prepared and tested, and very high energy density (30 Wh kg(-1)) is achieved. Ideal capacitive behavior (rectangular shape of cyclic voltammetry) is shown with this tailored architecture of the full cell.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available