4.8 Article

From Fano-like interference to superscattering with a single metallic nanodisk

Journal

NANOSCALE
Volume 6, Issue 15, Pages 9093-9102

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4nr02107j

Keywords

-

Funding

  1. NSF-ECCS [0969405]
  2. Gordon Moore Foundation
  3. National Basic Research Program of China [2012CB921503, 2013CB632702]

Ask authors/readers for more resources

Superscattering was theoretically proposed to significantly enhance the scattering cross-section of a subwavelength nanostructure, far exceeding its single-resonance limit by employing resonances of multiple plasmonic modes. By numerical simulation, we design a subwavelength nanodisk as a simple candidate to achieve superscattering. Due to the phase retardation, the subradiant mode can be excited and interact with the superradiant mode in both spatial and frequency domains. By changing the height and diameter of the nanodisk, we show high tunability of the mode interaction and evolution of the resulting spectral features from Fano-like resonance to superscattering. A model of two-driven coupled oscillators is proposed to quantitatively analyze the spectral evolution. We find that the evolution is caused by not only alignment of the resonant wavelengths of related plasmonic modes, but also reasonably high loss. We show that superscattering doubles the near-field intensity, potentially enhancing the signal 16 times for SERS and 4 times for SEIRS, and doubles the far-field intensity and decreases the peak linewidth, improving the figure of merit for plasmonic refractometric sensing. Our study provides quantitative physical insight into understanding superscattering and Fano-like resonances in a single nanoparticle.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available