4.8 Article

Cost-effective and eco-friendly synthesis of novel and stable N-doped ZnO/g-C3N4 core-shell nanoplates with excellent visible-light responsive photocatalysis

Journal

NANOSCALE
Volume 6, Issue 9, Pages 4830-4842

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3nr05271k

Keywords

-

Funding

  1. Department of Science and Technology, Government of India [SR/FT/CS-096/2009]
  2. Ministry of Human Resource Development, Government of India

Ask authors/readers for more resources

N-doped ZnO/g-C3N4 hybrid core-shell nanoplates have been successfully prepared via a facile, cost-effective and eco-friendly ultrasonic dispersion method for the first time. HRTEM studies confirm the formation of the N-doped ZnO/g-C3N4 hybrid core-shell nanoplates with an average diameter of 50 nm and the g-C3N4 shell thickness can be tuned by varying the content of loaded g-C3N4. The direct contact of the N-doped ZnO surface and g-C3N4 shell without any adhesive interlayer introduced a new carbon energy level in the N-doped ZnO band gap and thereby effectively lowered the band gap energy. Consequently, the as-prepared hybrid core-shell nanoplates showed a greatly enhanced visible-light photocatalysis for the degradation of Rhodamine B compare to that of pure N-doped ZnO surface and g-C3N4. Based on the experimental results, a proposed mechanism for the N-doped ZnO/g-C3N4 photocatalyst was discussed. Interestingly, the hybrid core-shell nanoplates possess high photostability. The improved photocatalytic performance is due to a synergistic effect at the interface of the N-doped ZnO and g-C3N4 including large surface-exposure area, energy band structure and enhanced charge-separation properties. Significantly, the enhanced performance also demonstrates the importance of evaluating new core-shell composite photocatalysts with g-C3N4 as shell material.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available