4.8 Article

Proximal gap-plasmon nanoresonators in the limit of vanishing inter-cavity separation

Journal

NANOSCALE
Volume 6, Issue 17, Pages 10274-10280

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4nr03123g

Keywords

-

Ask authors/readers for more resources

Nanostructured metal-insulator-metal (MIM) metasurfaces supporting gap-plasmons (GPs) show great promise due to their ability to manipulate or concentrate light at the nanoscale, which is of importance to a broad palette of technologies. The interaction between individual, proximal GP nanoresonators, reaching the point of first electrical connection, can have unexpected, important consequences and remains unexplored. Here we study the optical properties of a GP-metasurface in the limit of diminishing spacing between GP nanocavities and show that it maintains its nanoresonator array character, with negligible GP interaction, even at extremely close proximity between cavities. Then, at the point where inter-cavity electrical connection is first established, the surface abruptly transforms into a patterned metal-insulator-metal waveguide. We report detailed experimental evidence and explain the underlying physics through computational modeling and based on the properties and inherent symmetries of the electromagnetic field of the investigated metasurface. The novel phenomenon explored here can have a host of potential applications in the field of active plasmonic metamaterials, plasmonic photocatalysis and ultra-sensitive sensors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available