4.8 Article

Photocatalytic water splitting for hydrogen generation on cubic, orthorhombic, and tetragonal KNbO3 microcubes

Journal

NANOSCALE
Volume 5, Issue 18, Pages 8375-8383

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3nr02356g

Keywords

-

Funding

  1. National Natural Science Foundation of China [51272048, 20903099]
  2. Fundamental Research Funds for the Central Universities [N100605001]
  3. 973 Program [2013CB632402]

Ask authors/readers for more resources

Potassium niobate (KNbO3) microcubes with orthorhombic and tetragonal phases were hydrothermally prepared and characterized by powder X-ray diffraction, nitrogen adsorption-desorption, micro-Raman spectroscopy, Fourier transform infrared spectroscopy, diffuse reflectance UV-visible spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and high-resolution transmission electron microscopy. The photoreactivity of the as-prepared KNbO3 samples was evaluated regarding the hydrogen evolution from aqueous methanol under UV, and the results were compared with that of cubic KNbO3 microcubes. The photocatalytic reactivity was shown to be phase-dependent, following the order cubic > orthorhombic > tetragonal. Insight into the phase-dependent photocatalytic properties was gained by first-principles density functional calculations. The best photocatalytic performance of cubic KNbO3 is ascribed to it having the highest symmetry in the bulk structure and associated unique electronic structure. Further, the surface electronic structure plays a key role leading to the discrepancy in photoreactivity between orthorhombic and tetragonal KNbO3. The results from this study are potentially applicable to a range of perovskite-type mixed metal oxides useful in water splitting as well as other areas of heterogeneous photocatalysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available