4.8 Article

Carbon and graphene double protection strategy to improve the SnOx electrode performance anodes for lithium-ion batteries

Journal

NANOSCALE
Volume 5, Issue 12, Pages 5499-5505

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3nr00467h

Keywords

-

Funding

  1. National Natural Science Foundation of China [21003041, 21103046]
  2. Hunan Provincial Natural Science Foundation of China [10JJ1011, 11JJ7004]

Ask authors/readers for more resources

SnOx is a promising high-capacity anode material for lithium-ion batteries (LIBs), but it usually exhibits poor cycling stability because of its huge volume variation during the lithium uptake and release process. In this paper, SnOx carbon nanofibers (SnOx@CNFs) are firstly obtained in the form of a nonwoven mat by electrospinning followed by calcination in a 0.02 Mpa environment at 500 degrees C. Then we use a simple mixing method for the synthesis of SnOx@CNF@graphene (SnOx@C@G) nanocomposite. By this technique, the SnOx@CNFs can be homogeneously deposited in graphene nanosheets (GNSs). The highly scattered SnOx@C@G composite exhibits enhanced electrochemical performance as anode material for LIBs. The double protection strategy to improve the electrode performance through producing SnOx@C@G composites is versatile. In addition, the double protection strategy can be extended to the fabrication of various types of composites between metal oxides and graphene nanomaterials, possessing promising applications in catalysis, sensing, supercapacitors and fuel cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available