4.8 Article

Free standing TiO2 nanotube array electrodes with an ultra-thin Al2O3 barrier layer and TiCl4 surface modification for highly efficient dye sensitized solar cells

Journal

NANOSCALE
Volume 5, Issue 21, Pages 10438-10446

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3nr03198e

Keywords

-

Funding

  1. Bradley Catalyst Program of the University of Wisconsin, Milwaukee
  2. National Science Foundation [ECCS-1001039]
  3. Department of Energy [DE-EE0003208]
  4. Div Of Electrical, Commun & Cyber Sys
  5. Directorate For Engineering [1001039] Funding Source: National Science Foundation

Ask authors/readers for more resources

Dye sensitized solar cells were fabricated with free standing TiO2 nanotube (TNT) array films, which were prepared by template assisted atomic layer deposition (ALD) with precise wall thickness control. Efforts to improve the photovoltaic performance were made by using Al2O3 barrier layer coating in conjunction with TiCl4 surface modification. An Al2O3 thin layer was deposited on the TNT electrode by ALD to serve as the charge recombination barrier, but it suffers from the drawback of decreasing the photoelectron injection from dye into TiO2 when the barrier layer became too thick. With the TiCl4 treatment in combination with optimal thickness coating, this problem could be avoided. The co-surface treated electrode presents superior surface property with low recombination rate and good electron transport property. A high conversion efficiency of 8.62% is obtained, which is about 1.8 times that of the device without surface modifications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available