4.8 Article

Using the Langmuir-Schaefer technique to fabricate large-area dense SERS-active Au nanoprism monolayer films

Journal

NANOSCALE
Volume 5, Issue 14, Pages 6404-6412

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3nr00981e

Keywords

-

Funding

  1. National Research Foundation, Singapore [NRF-NRFF2012-04]
  2. Nanyang Technological University start-up grant

Ask authors/readers for more resources

Interfacial self-assembly of nanoparticles is capable of creating large-area close-packed structures for a variety of applications. However, monolayers of hydrophilic cetyltrimethylammonium bromide (CTAB)coated Au nanoparticles are challenging to assemble via interfacial self-assembly. This report presents a facile and scalable process to fabricate large-area monolayer films of ultrathin CTAB-coated Au nanoprisms at the air-water interface using the Langmuir-Schaefer technique. This is first achieved by a one-step functionalization of Au nanoprisms with poly(vinylpyrrolidone) (PVP). PVP functionalization is completed within a short time without loss of nanoprisms due to aggregation. Uniform and near close-packed monolayers of the Au nanoprisms formed over large areas (similar to 1 cm(2)) at the air-water interface can be transferred to substrates with different wettabilities. The inter-prism gaps are tuned qualitatively through the introduction of dodecanethiol and oleylamine. The morphological integrity of the nanoprisms is maintained throughout the entire assembly process, without truncation of the nanoprism tips. The near close-packed arrangement of the nanoprism monolayers generates large numbers of hot spots in the 2D arrays in the tip-to-tip and edge-to-edge inter-particle regions, giving rise to strong surface-enhanced Raman scattering (SERS) signals. When deposited on an Au mirror film, additional hotspots are created in the 3rd dimension in the gaps between the 2D nanoprism monolayers and the Au film. SERS enhancement factors reaching 10(4) for non-resonant probe molecules are achieved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available