4.8 Article

Emergent properties and trends of a new class of carbon nanocomposites: graphene nanoribbons encapsulated in a carbon nanotube

Journal

NANOSCALE
Volume 5, Issue 8, Pages 3306-3314

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3nr33941f

Keywords

-

Funding

  1. Alexander von Humboldt Foundation of Germany
  2. Department of Energy [DE-FC52-06NA26274]

Ask authors/readers for more resources

Using density functional theory calculations, we show that recently synthesized carbon nanocomposites of graphene nanoribbons encapsulated in a carbon nanotube (GNR@CNT) possess rich emergent electronic and magnetic properties that offer new functionality and tunability and display systematic trends that are sensitive to the matchup of constitutive GNRs and CNTs. The encapsulation of H-passivated GNRs in metallic armchair CNTs always leads to a metallic complex while those in semiconducting zigzag CNTs can be either metallic or semiconducting depending on the chirality of GNRs. In particular, the complex of armchair GNRs in a zigzag CNT exhibits an oscillating electronic band gap with changing GNR width and a well-separated spatial distribution of electrons and holes localized in the CNT and GNR components, respectively. When bare large zigzag GNRs are encapsulated in an armchair CNT, the resulting complex shows strong structural stability and enhanced magnetism and, most interestingly, such GNR@CNT configurations can be tuned to be metallic or semiconducting depending on relative bond position and magnetic order. These results offer key insights for understanding and predicting emergent properties of GNR@CNT, which establish a roadmap for guiding design and synthesis of specific nanocomposite configurations with tailor-made properties for nanoelectronic, photovoltaic and spintronic applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available