4.8 Article

Screening sensitive nanosensors via the investigation of shape-dependent localized surface plasmon resonance of single Ag nanoparticles

Journal

NANOSCALE
Volume 5, Issue 16, Pages 7458-7466

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3nr01952g

Keywords

-

Funding

  1. National Natural Science Foundation of China (NSFC) [21035005]
  2. Postgraduate Science and Technology Innovation Program of Southwest China University [ky2011006]

Ask authors/readers for more resources

Understanding the localized surface plasmon resonance (LSPR) of differently shaped plasmonic nanoparticles benefits screening and designing highly sensitive single nanoparticle sensors. Herein, in the present work, we systematically investigated the shape-dependent scattering light colours and refractive index (RI) sensitivity of Ag nanoparticles (AgNPs) at the single nanoparticle level using conventional dark-field light scattering microscopy and spectroscopy. AgNPs in various shapes and scattering colourful light were synthesized, and the shape effect on the scattering light colour was determined by the colocalization of the same nanoparticles with dark-field microscopy (DFM) and scanning electron microscopy (SEM). The results showed that the AgNPs that scattered blue, cyan, yellow, and red light are spheres, cubes, triangular bipyramids, and rods, respectively, which enable us to directly recognize the shape of AgNPs through dark-field microscopy instead of electron microscopy. Further studies on investigation of the scattering spectral responses of single AgNPs to their surrounding solvents show that the RI sensitivity of AgNPs of different shapes followed the order of rods > cubes > triangular bipyramids > spheres. Among the commonly studied AgNPs, Ag nanorods have the highest RI sensitivity, which increases as the aspect ratio increases. Then, AgNPs of various shapes were used as single nanoparticle sensors for probing the adsorption of small molecules.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available