4.8 Article

Rapid two-step metallization through physicochemical conversion of Ag2O for printed black transparent conductive films

Journal

NANOSCALE
Volume 5, Issue 11, Pages 5043-5052

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3nr00962a

Keywords

-

Funding

  1. Basic Science Research Program through the National Research Foundation of Korea (NRF)
  2. Ministry of Education, Science and Technology [2012R1A1A2038889]

Ask authors/readers for more resources

A rapid two-step metallization for fabrication of a black transparent conductive film on a flexible substrate for display applications is presented, using a mixture of silver oxide (Ag2O) and silver neodecanoate (C10H19AgO2), and its electrical conductivity and colour transition behaviours are investigated. Silver nanoparticles, which are physicochemically converted from silver oxide microparticles in the presence of silver neodecanoate in the course of the first metallization step at 150 degrees C for 10 min, are chemically annealed by immersing them in an acidic ferric chloride (FeCl3) solution at room temperature for 10 s. During this second metallization step, silver nanoparticles are found to be tightly packed through Ostwald ripening, which eventually leads to the dramatic enhancement of electrical conductivity by six orders of magnitude from 1.33 S m(-1) to 1.0 x 10(7) S m(-1), which corresponds to 15.9% of the electrical conductivity of bulk silver. In addition to the enhancement of electrical conductivity, the silver chloride (AgCl) layer formed on the surface of the silver layer due to ferric ions (Fe3+) enhances the blackness of the transparent conductive film by a factor of 1.69, from 36.29 B to 61.51 B. The sheet resistance and optical transparency of a roll-to-roll printed black transparent conductive film for a touch screen panel are found to be as low as 0.9 Omega square (1) and 81%, respectively, after conducting the proposed two-step metallization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available