4.8 Article

Supramolecular alignment of gold nanorods via cucurbit[8]uril ternary complex formation

Journal

NANOSCALE
Volume 5, Issue 12, Pages 5299-5302

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3nr01454a

Keywords

-

Funding

  1. EPSRC [EP/F035535/1] Funding Source: UKRI
  2. Engineering and Physical Sciences Research Council [EP/F035535/1] Funding Source: researchfish

Ask authors/readers for more resources

We have shown, for the first time, that a three component system is capable of aligning gold nanorods (AuNRs) through supramolecular host-guest interactions leading to control over AuNR end-to-end assembly. Viologen end-functionalised AuNRs were prepared that were capable of selectively binding to a cucurbit[8]uril (CB[8]) macrocyclic host molecule. These end-functionalised AuNRs could participate in 1 : 1 : 1 ternary complexation with synthesised telechelic linker molecules bearing second guest moieties, in the presence of CB[8]. When the linker length was long and flexible aggregation and precipitation of AuNRs were readily observed, but with no control over the AuNR conformation. On the other hand, when the linker length was shortened thereby imparting a more rigid connection between neighboring gold nanorods, the end-toend assembly of AuNRs was achieved. We also note that in the presence of a molecule capable of occupying the entirety of the CB[8] cavity, end-to-end assembly is not observed as the system's ability to form a 1 : 1 : 1 ternary complex is halted. Thus, the end-to-end assembly relies upon both having a relatively short and rigid linker as well as the specific, yet tuneable supramolecular 1 : 1 : 1 ternary complexation between the three components.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available