4.7 Article

One-step hydrothermal green synthesis of silver nanoparticle-carbon nanotube reduced-graphene oxide composite and its application as hydrogen peroxide sensor

Journal

SENSORS AND ACTUATORS B-CHEMICAL
Volume 208, Issue -, Pages 389-398

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2014.11.074

Keywords

Hydrothermal; Silver nanoparticles; Carbon nanotube; Reduced graphene oxide; Hydrogen peroxide; Sensor

Funding

  1. Ministry of Education Malaysia [UM.C/625/1/HIR/MOE/F00004-21001]
  2. University of Malaya [RP006C-13SUS, PG135-2012B]

Ask authors/readers for more resources

A novel sensing composite of silver nanoparticles (AgNPs)-reduced graphene oxide (rGO)-carbon nano-tube (MWCNT) was successfully synthesized by a simple one-step hydrothermal method without reducing agent. Mild reduction of GO was carried out under hydrothermal condition. While most conventional approaches make use of multistep chemical methods wherein strong reducing agents, such as hydrazine, hydroquinone, and sodium borohydride are employed, our method provides the notable advantage of a single-step reaction without employing any toxic solvent or reducing agent by providing a novel green synthetic route to produce the nanocomposites of rGO, carbon nanotube and silver. The results of X-ray diffraction (XRD) and Fourier-transform infrared transmission spectroscopy (FT-IR) confirmed the simultaneous formation of silver nanoparticles in the GO and MWCNT matrix. Field emission scanning electron microscope (FESEM) images and transmission electron microscopy (TEM) showed uniform distribution of nanometer-sized silver nanoparticles and narrow-sized MWCNT on GO sheets, which was achieved using silver ammonia complex as the precursor, instead of the commonly used silver nitrate. The composite exhibited excellent electrocatalytic activity for the reduction of H(2)O(2)with a fast amperometric response time less than 3 s. The electrocatalytic activity for the reduction was strongly affected by the concentration of silver ammonia solution in the nanocomposites, with the best electrocatalytic activity observed for the composite of 6:1 volume ratios of MWCNT-GO (3:1, v/v) to Ag(NH3) 2OH (0.04 M). The corresponding calibration curve for the current response showed a linear detection range of 0.1-100mM (R-2=0. 9985), while the limit of detection was estimated to be 0.9 mu M. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available