4.8 Article

In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures

Journal

NANOSCALE
Volume 3, Issue 8, Pages 3132-3137

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1nr10355e

Keywords

-

Ask authors/readers for more resources

Three-dimensional (3D) architectures of graphene are of interest in applications in electronics, catalysis devices, and sensors. However, it is still a challenge to fabricate macroscopic all-graphene 3D architectures under mild conditions. Here, a simple method for the preparation of 3D architectures of graphene is developed via the in situ self-assembly of graphene prepared by mild chemical reduction at 95 degrees C under atmospheric pressure without stirring. No chemical or physical cross-linkers or high pressures are required. The reducing agents include NaHSO3, Na2S, Vitamin C, HI, and hydroquinone. Both graphene hydrogels and aerogels can be prepared by this method, and the shapes of the 3D architectures can be controlled by changing the type of reactor. The 3D architectures of graphene have low densities, high mechanical properties, thermal stability, high electrical conductivity, and high specific capacitance, which make them candidates for potential applications in supercapacitors, hydrogen storage and as supports for catalysts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available