4.8 Article

Specific effects of surface carboxyl groups on anionic polystyrene particles in their interactions with mesenchymal stem cells

Journal

NANOSCALE
Volume 3, Issue 5, Pages 2028-2035

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0nr00944j

Keywords

-

Funding

  1. Deutsche Forschungsgemeinschaft (DFG) through the Center for Functional Nanostructures (CFN)
  2. [SPP1313]
  3. [NI 291/8]
  4. [MA 3271/3]
  5. [LA 1013/13]

Ask authors/readers for more resources

Nanoparticle uptake by living cells is governed by chemical interactions between functional groups on the nanoparticle as well as the receptors on cell surfaces. Here we have investigated the uptake of anionic polystyrene (PS) nanoparticles of similar to 100 nm diameter by mesenchymal stem cells (MSCs) using spinning-disk confocal optical microscopy combined with a quantitative analysis of the fluorescence images. Two types of anionic PS nanoparticles with essentially identical sizes and zeta-potentials were employed in this study, carboxyl-functionalized nanoparticles (CPS) and plain PS nanoparticles, both coated with anionic detergent for stabilization. CPS nanoparticles were observed to internalize more rapidly and accumulate to a much higher level than plain PS nanoparticles. The relative importance of different uptake mechanisms for the two types of nanoparticles was investigated by using specific inhibitors. CPS nanoparticles were internalized mainly via the clathrin-mediated mechanism, whereas plain PS nanoparticles mainly utilized the macropinocytosis pathway. The pronounced difference in the internalization behavior of CPS and plain PS nanoparticles points to a specific interaction of the carboxyl group with receptors on the cell surface.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available