4.8 Article

Phosphorus and phosphorus-nitrogen doped carbon nanotubes for ultrasensitive and selective molecular detection

Journal

NANOSCALE
Volume 3, Issue 3, Pages 1008-1013

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0nr00519c

Keywords

-

Funding

  1. US Department of Energy [DEAC05-00OR22725]
  2. Division of Scientific User Facilities, US Department of Energy
  3. Division of Materials Science and Engineering, Basic Energy Sciences, US Department of Energy
  4. National Center for Computational Sciences
  5. F.R.S.-FNRS of Belgium
  6. Communaute Francaise de Belgique
  7. JST-Japan

Ask authors/readers for more resources

A first-principles approach is used to establish that substitutional phosphorus atoms within carbon nanotubes strongly modify the chemical properties of the surface, thus creating highly localized sites with specific affinity towards acceptor molecules. Phosphorus-nitrogen co-dopants within the tubes have a similar effect for acceptor molecules, but the P-N bond can also accept charge, resulting in affinity towards donor molecules. This molecular selectivity is illustrated in CO and NH3 adsorbed on PN-doped nanotubes, O-2 on P-doped nanotubes, and NO2 and SO2 on both P- and PN-doped nanotubes. The adsorption of different chemical species onto the doped nanotubes modifies the dopant-induced localized states, which subsequently alter the electronic conductance. Although SO2 and CO adsorptions cause minor shifts in electronic conductance, NH3, NO2, and O-2 adsorptions induce the suppression of a conductance dip. Conversely, the adsorption of NO2 on PN-doped nanotubes is accompanied with the appearance of an additional dip in conductance, correlated with a shift of the existing ones. Overall these changes in electric conductance provide an efficient way to detect selectively the presence of specific molecules. Additionally, the high oxidation potential of the P-doped nanotubes makes them good candidates for electrode materials in hydrogen fuel cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available