4.8 Review

Evaluation of metallic and semiconducting single-walled carbon nanotube characteristics

Journal

NANOSCALE
Volume 3, Issue 5, Pages 2074-2085

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0nr00958j

Keywords

-

Funding

  1. National Natural Science Foundation of China [20951002, 60736004, 60911130231]
  2. Major State Basic Research Development Program [2011CB932303, 2009CB623603]
  3. Chinese Academy of Sciences

Ask authors/readers for more resources

The nature of the mixed electronic type metallic (M-) and semiconducting (S-) single-walled carbon nanotubes (SWNTs) synthesized by current methods has posed a key challenge for the development of high performance SWNT-based electronic devices. The precise measurements of M-to S-SWNT ratio in as-grown or separated samples are of paramount importance for the controlled synthesis, separation and the realization of various applications. The objective of this review is to provide comprehensive overview of the progress achieved so far for measuring the M/S ratio both on individual and collective levels of SWNT states. We begin with a brief introduction of SWNT structures/properties and discussion of the problems and difficulties associated with precise measurement of the M/S ratio, and then introduce the principles for obtaining distinguished signals from M-and S-SWNTs. These techniques are classified into different groups based either on the single/ensemble detection of SWNT samples or on the principles of techniques themselves. We then present the M/S ratio evaluation results of these methods, with emphasis on scanning probe microscopy (SPM)-based detection techniques. Finally, the prospects of precise and large-scale measurement of M/S ratio in achieving controlled synthesis and understanding growth mechanism of SWNTs are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available