4.8 Article

A miniemulsion polymerization technique for encapsulation of silicon quantum dots in polymer nanoparticles

Journal

NANOSCALE
Volume 3, Issue 11, Pages 4733-4741

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1nr10938c

Keywords

-

Funding

  1. Ministry of Higher Education, Malaysia
  2. Universiti Malaysia Terengganu
  3. regional development agency One North East (UK)

Ask authors/readers for more resources

Miniemulsion polymerization techniques were used to encapsulate luminescent alkylated silicon quantum dots (Si-QDs) within polymer nanoparticles composed of styrene and 4-vinylbenzaldehyde monomers. The polymer nanoparticles had mean diameters in the range 90-150 nm depending on the reaction conditions, however all samples showed narrow particle size distributions, as determined by dynamic light scattering and atomic force microscopy. The Si-QDs were found to have a small, but beneficial effect on the polymerization process by reducing the polydispersity of the final polymer particles, which we attribute to co-surfactant action of the undecene used to form the alkyl capping layer on the Si-QDs. Confocal microspectroscopy was used to confirm that the luminescent alkylated Si-QDs were encapsulated within the polymer nanoparticles and also provided luminescence and Raman spectra which show peaks corresponding to both alkylated Si-QDs and the polymer nanoparticles. Treatment of the polymer nanoparticles with dilute aqueous sodium hydroxide solution, which is known to corrode Si and extinguish the luminescence of alkylated Si-QDs, results in only a partial reduction in luminescence suggesting that the majority of the alkylated Si-QDs are encapsulated sufficiently deep within the polymer matrix to protect them from alkaline attack. Miniemulsion polymerization of the monomers styrene and 4-vinylbenzaldehyde affords polymer nanoparticles displaying reactive aldehyde groups upon their surfaces, which could then be decorated with a selection of molecules through imine, oxime or hydrazone condensation reactions. We speculate that polymer-SiQD composite nanoparticles whose surfaces can be further decorated will increase the utility of luminescent Si-QDs in applications such as anti-counterfeiting and as probes of biological processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available