4.6 Article

Nanoclusters self-assembled from conformation-stabilized influenza M2e as broadly cross-protective influenza vaccines

Journal

NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE
Volume 10, Issue 2, Pages 473-482

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.nano.2013.08.005

Keywords

Cross protection; Matrix protein 2 (M2); Nanocluster

Funding

  1. NSF

Ask authors/readers for more resources

Influenza vaccines with broad cross-protection are urgently needed. The highly conserved ectodomain of the influenza matrix protein 2 (M2e) can be a promising candidate if its low immunogenicity was overcome. In this study, we generated protein nanoclusters self-assembled from conformation-stabilized M2e tetramers (tM2e) to improve its immunogenicity. The resulting nanoclusters showed an average hydrodynamic diameter of 227 nm. Vaccination with the nanoclusters by an intranasal route elicited high levels of serum antigen-specific IgG in mice (approximately 100-fold higher than that obtained with soluble tM2e), as well as antigen-specific T cell and mucosal antibody responses. The immunity conferred complete protection against lethal challenge with homo-as well as heterosubtypic viruses. These results demonstrate that nanoclusters assembled from conformation-stabilized M2e are promising as a potential universal influenza A vaccine. Self-assembly into nanoclusters represents a novel approach for increasing the immunogenicity of vaccine antigens. (C) 2014 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available