4.6 Article

Increased brain uptake of docetaxel and ketoconazole loaded folate-grafted solid lipid nanoparticles

Journal

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.nano.2012.03.003

Keywords

Docetaxel; Ketoconazole; Folic acid; Solid lipid nanoparticles; Pharmacokinetics; Brain permeation coefficient

Funding

  1. Council for Scientific and Industrial Research (CSIR), New Delhi

Ask authors/readers for more resources

Docetaxel is used in the treatment of many types of cancer, but its entry into the brain is restricted by p-glycoprotein (p-gp) efflux. A potential drug-drug interaction exists between docetaxel and ketoconazole because both agents are metabolized hepatically by the cytochrome P-450 system, and ketoconazole can inhibit p-gp efflux of docetaxel at blood brain barrier. Hence, these two drugs were loaded in solid lipid nanoparticles (SLNPs) and surface of these NPs were modified with folic acid for brain targeting. These NPs were characterized for particle size, zeta potential, entrapment efficiency, in vitro drug release, cytotoxicity, and cell uptake in brain endothelial cell lines. Plasma and brain pharmacokinetics have shown increased brain uptake of docetaxel with surface-modified dual drug-loaded SLNPs. Brain permeation coefficient (K-in) of folate-grafted docetaxel and ketoconazole loaded SLNPs was 44 times higher than that of Taxotere. Hence, these NPs were suitable for the delivery of lipophilic anticancer drugs to the brain.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available