4.6 Article

Effect of endothelium mimicking self-assembled nanomatrices on cell adhesion and spreading of human endothelial cells and smooth muscle cells

Journal

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.nano.2009.09.004

Keywords

Peptide amphiphiles; Self-assembly; Tissue engineering; Vascular grafts

Funding

  1. Wallace H. Coulter Foundation
  2. NIBIB [T32EB004312]
  3. Caroline P. Ireland Research Scholarship

Ask authors/readers for more resources

The goal of this study is to develop unique native endothelium mimicking nanomatrices and evaluate their effects on adhesion and spreading of human umbilical vein endothelial cells (HUVECs) and aortic smooth muscle cells (AoSMCs). These nanomatrices were developed by self-assembly of peptide amphiphiles (PAs) through a solvent evaporation technique. Three PAs, one containing the Tyr-Ile-Gly-Ser-Arg (YIGSR) ligand, the second containing the Val-Ala-Pro-Gly (VAPG) ligand, and a third without cell adhesive ligands, were developed. Cell adhesion and spreading were evaluated by a PicoGreen-DNA assay and live/dead assay, respectively. Our results show that PA-YIGSR significantly enhances HUVEC adhesion (26,704 +/- 2708), spreading (84 +/- 8%), and proliferation (50 +/- 2%) compared with that of other PAs. PA-VAPG and PA-YIGSR showed significantly greater AoSMC adhesion compared with that of PA-S. PA-VAPG also showed significantly greater spreading of AoSMCs (63 +/- 11%) compared with that of other PAs. Also, all the PAs showed significantly reduced platelet adhesion compared with that of collagen I (control). These findings would facilitate the development of novel vascular grafts, heart valves, and cell-based therapies for cardiovascular diseases. From the Clinical Editor: The goal of this study was to develop unique native endothelium mimicking nanomatrices and evaluate their effects on adhesion and spreading of human umbilical vein endothelial cells (HUVECs) and aortic smooth muscle cells (AoSMCs). These nanomatrices were developed by self-assembly of peptide amphiphiles through a solvent evaporation technique. The findings are expected to facilitate the development of novel vascular grafts, heart valves, and cell based therapies for cardiovascular diseases. (C) 2010 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available