4.6 Article

Surface chemistry influences cancer killing effect of TiO2 nanoparticles

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.nano.2008.04.001

Keywords

Surface functionality; TiO2 nanoparticles; Cancer; Toxicity

Funding

  1. NIH [RO1 GM074021]
  2. AHA Established Investigator Award
  3. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [R01GM074021] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Photocatalyzed titanium dioxide (TiO2) nanoparticles have been shown to eradicate cancer cells. However, the required in situ introduction of ultraviolet light limits the use of such a therapy in humans. In the present study the nonphotocatalyic anticancer effect of surface-functionalized TiO2 was examined. Nanoparticles bearing -OH, -NH2, or -COOH surface groups were tested for their effect on in vitro survival of several cancer and control cell lines. The cells tested included B16F10 melanoma, Lewis lung carcinoma, JHU prostate cancer cells, and 3T3 fibroblasts. Cell viability was observed to depend on particle concentrations, cell types, and surface chemistry. Specifically, -NH2 and -OH groups showed significantly higher toxicity than -COOH. Microscopic and spectrophotometric studies revealed nanoparticle-mediated cell membrane disruption leading to cell death. The results suggest that functionalized TiO2, and presumably other nanoparticles, can be surface-engineered for targeted cancer therapy. (C) 2008 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available