4.7 Article

Differential cytotoxicity and particle action of hydroxyapatite nanoparticles in human cancer cells

Journal

NANOMEDICINE
Volume 9, Issue 3, Pages 397-412

Publisher

FUTURE MEDICINE LTD
DOI: 10.2217/NNM.12.217

Keywords

apoptosis induction; cell type-dependent cytotoxicity; cellular uptake and distribution; hydroxyapatite nanoparticles; intracellular calcium concentration; reactive oxygen species

Funding

  1. National Basic Research Program of China (973 Program) [2012CB933600]
  2. National Natural Science Foundation of China [31271010]
  3. Fundamental Research Funds for the Central Universities

Ask authors/readers for more resources

Aim: While hydroxyapatite nanoparticles (HAPNs) have been reported to exhibit anticancer effects on several types of human cancer cells, no investigation has been performed to compare their cytotoxicity with different types of cancer cells. The objective of the present study is to investigate the cytotoxic action of HAPNs in different types of human cancer cell and to explore the possible mechanisms involved. Materials & methods: Rod-shaped HAPNs were prepared by the aqueous precipitation method and then labeled with ?uorescein isothiocyanate to visualize the cellular uptake and distribution. Their cytotoxicity to three human carcinoma cell lines (gastric cancer cells [MGC80-3], cervical adenocarcinoma epithelial cells [HeLa] and hepatoma cells [HepG2], as well as to normal human hepatocyte cells [L-02]) was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell apoptosis was characterized by the changes in nuclear morphology with 4',6-diamidino-2-phenylindole staining and by ?ow cytometric analysis with Annexin V-?uorescein isothiocyanate/propidium iodide double staining. Furthermore, the activity of apoptotic proteins (caspase-3, -8 and -9), intracellular reactive oxygen species and glutathione levels were analyzed in HAPN-treated cells. The cellular uptake of HAPNs was studied using flow cytometry analysis, and changes in intracellular calcium levels were investigated using the Ca2+-sensitive fluorescent dye, fluo-3 AM. Results: HAPNs significantly inhibited cell proliferation and induced apoptosis of cancer cells with an order of MGC80-3 > HepG2 > HeLa, but had no impact on normal hepatic cells (L-02). The increase in apoptosis was accompanied by the activation of caspase-3 and -9, but not activation of caspase-8. Moreover, HAPN treatment led to reactive oxygen species generation and decreased intracellular glutathione in cancer cells, with the most remarkable reactive oxygen species burst in HeLa cells. The degree of cytotoxicity did not correlate with the cellular uptake efficiency of HAPNs. However, more HAPNs were found inside the nucleus of MGC80-3 cells, and an increase in the intracellular calcium level was observed in all cancer cells, with the highest level also detected in MGC80-3. Conclusion: Varying cytotoxicity of HAPNs was observed in different cancer cell types. Our results suggest that possible mechanisms of cytotoxicity in various types of cancer cells could be different. The elevated calcium concentration and nuclear localization of the particles might be the main mechanism of growth inhibition by HAPNs in cancer cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available