4.7 Article

Silver nanoparticles do not influence stem cell differentiation but cause minimal toxicity

Journal

NANOMEDICINE
Volume 7, Issue 8, Pages 1197-1209

Publisher

FUTURE MEDICINE LTD
DOI: 10.2217/NNM.12.18

Keywords

in vitro; nanoparticles; nanotechnology; nanotoxicology; scaffolds; silver; stem cells

Funding

  1. United States Air Force Office of Scientific Research (USAFOSR) [FA 9550-08-1-0182]
  2. NIH [RO1 ES016138]

Ask authors/readers for more resources

Aims: To evaluate the toxicity and cellular uptake of both undifferentiated and differentiated human adipose-derived stem cells (hASCs) exposed to silver nanoparticles (Ag-NPs), and to assess their effect on hASC differentiation. Materials & methods: hASC were exposed to 10- or 20-nm Ag-NPs at concentrations of 0.1, 1.0, 10.0, 50.0 and 100.0 mu g/ml either before or after differentiation down the adipogenic or osteogenic pathways. Results: Exposure of hASC to either 10- or 20-nm Ag-NPs resulted in no significant cytotoxicity to hASC, and minimal dose-dependent toxicity to adipogenic and osteogenic cells at 10 mu g/ml. Each of the hASC, adipogenic and osteogenic cells showed cellular uptake of both 10- and 20-nm Ag-NPs, without causing significant ultrastructural alterations. Exposure to 10- or 20-nm Ag-NPs did not influence the differentiation of the cells, and at antimicrobial concentrations of Ag-NPs resulted in a minimal decrease in viability. Conclusion: The biocompatibility of Ag-NPs with both undifferentiated and differentiated hASC establishes their suitability for incorporation into tissue-engineered graft scaffolds, for the prevention of bacterial contamination upon implantation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available