4.7 Article

Distribution and clearance of PEG-single-walled carbon nanotube cancer drug delivery vehicles in mice

Journal

NANOMEDICINE
Volume 5, Issue 10, Pages 1535-1546

Publisher

FUTURE MEDICINE LTD
DOI: 10.2217/NNM.10.90

Keywords

biodistribution; cancer; carbon nanotube; cisplatin; clearance; drug delivery; dynamic light scattering; growth factor; H & E staining; polyethylene glycol; Raman spectroscopy; STEM

Funding

  1. National Institute of Dental and Craniofacial Research
  2. National Institute of Biomedical Imaging and Bioengineering, NIH
  3. NIEHS/NIH [ES013557]
  4. University of Connecticut

Ask authors/readers for more resources

Aims: To study the distribution and clearance of polyethylene glycol (PEG)-ylated single-walled carbon nanotube (SWCNTs) as drug delivery vehicles for the anticancer drug cisplatin in mice. Materials & methods: PEG layers were attached to SWCNTs and dispersed in aqueous media and characterized using dynamic light scattering, scanning transmission electron microscopy and Raman spectroscopy. Cytotoxicity was assessed in vitro using Annexin-V assay, and the distribution and clearance pathways in mice were studied by histological staining and Raman spectroscopy. Efficacy of PEG-SWCNT-cisplatin for tumor growth inhibition was studied in mice. Results & discussion: PEG-SWCNTs were efficiently dispersed in aqueous media compared with controls, and did not induce apoptosis in vitro. Hematoxylin and eosin staining, and Raman bands for SWCNTs in tissues from several vital organs from mice injected intravenously with nanotube bioconjugates revealed that control SWCNTs were lodged in lung tissue as large aggregates compared with the PEG-SWCNTs, which showed little or no accumulation. Characteristic SWCNT Raman bands in feces revealed the presence of bilary or renal excretion routes. Attachment of cisplatin on bioconjugates was visualized with Z-contrast scanning transmission electron microscopy. PEG-SWCNT-cisplatin with the attached targeting ligand EGF successfully inhibited growth of head and neck tumor xenografts in mice. Conclusions: PEG-SWCNTs, as opposed to control SWCNTs, form more highly dispersed delivery vehicles that, when loaded with both cisplatin and EGF, inhibit growth of squamous cell tumors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available