4.8 Article

High-resolution, serial intravital microscopic imaging of nanoparticle delivery and targeting in a small animal tumor model

Journal

NANO TODAY
Volume 8, Issue 2, Pages 126-137

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.nantod.2013.02.004

Keywords

Intravital microscopy; Cancer; Serial imaging; Targeting; Specificity; Single-walled carbon nanotubes; Nanoparticles

Funding

  1. NCI [CA160764, U54 CA119367]

Ask authors/readers for more resources

Nanoparticles are under active investigation for the detection and treatment of cancer. Yet our understanding of nanoparticle delivery to tumors is limited by our ability to observe the uptake process on its own scale in living subjects. We chose to study single-walled carbon nanotubes (SWNTs) because they exhibit among the highest levels of tumor uptake across the wide variety of available nanoparticles. We target them using RGD (arginine-glycine-aspartic acid) peptide which directs them to integrins overexpressed on tumor vasculature and on the surface of some tumor cells (e.g., U87MG as used here). We employ intravital microscopy (IVM) to quantitatively examine the spatiotemporal framework of targeted SWNT uptake in a murine tumor model. IVM provided a dynamic microscale window into nanoparticle circulation, binding to tumor blood vessels, extravasation, binding to tumor cells, and tumor retention. RGD-SWNTs bound to tumor vasculature significantly more than controls (P<0.0001). RGD-SWNTs extravasated similarly compared to control RAD-SWNTs, but post-extravasation we observed as RGD-SWNTs eventually bound to individual tumor cells significantly more than RAD-SWNTs (P<0.0001) over time. RGD-SWNTs and RAD-SWNTs displayed similar signal in tumor for a week, but over time their curves significantly diverged (P<0.001) showing increasing RGD-SWNTs relative to untargeted SWNTs. We uncovered the complex spatiotemporal interplay between these competing uptake mechanisms. Specific uptake was delimited to early (1-6 h) and late (1-4 weeks) time-points, while non-specific uptake dominated from 6 h to 1 week. Our analysis revealed critical, quantitative insights into the dynamic, multifaceted mechanisms implicated in ligand-targeted SWNT accumulation in tumor using real-time microscopic observation. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available