4.8 Article

Schottky barrier-based silicon nanowire pH sensor with live sensitivity control

Journal

NANO RESEARCH
Volume 7, Issue 2, Pages 263-271

Publisher

TSINGHUA UNIV PRESS
DOI: 10.1007/s12274-013-0393-8

Keywords

silicon nanowires; field effect transistor; sub-threshold regime; nanosensors; pH sensor; bottom-up fabrication; maximum sensitivity of sensor

Funding

  1. European Union (European Social Fund)
  2. Free State of Saxony (Sachsische Aufbaubank) in the young researcher group 'InnovaSens' [080942409]
  3. German Excellence Initiative via the Cluster of Excellence Center for Advancing Electronics Dresden (cfAED) [EXC1056]

Ask authors/readers for more resources

We demonstrate a pH sensor based on ultrasensitive nanosize Schottky junctions formed within bottom-up grown dopant-free arrays of assembled silicon nanowires. A new measurement concept relying on a continuous gate sweep is presented, which allows the straightforward determination of the point of maximum sensitivity of the device and allows sensing experiments to be performed in the optimum regime. Integration of devices into a portable fluidic system and an electrode isolation strategy affords a stable environment and enables long time robust FET sensing measurements in a liquid environment to be carried out. Investigations of the physical and chemical sensitivity of our devices at different pH values and a comparison with theoretical limits are also discussed. We believe that such a combination of nanofabrication and engineering advances make this Schottky barrier-powered silicon nanowire lab-on-a-chip platform suitable for efficient biodetection and even for more complex biochemical analysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available