4.8 Article

SnO2-reduced graphene oxide nanoribbons as anodes for lithium ion batteries with enhanced cycling stability

Journal

NANO RESEARCH
Volume 7, Issue 9, Pages 1319-1326

Publisher

TSINGHUA UNIV PRESS
DOI: 10.1007/s12274-014-0496-x

Keywords

lithium ion battery; tin oxide; graphene oxide nanoribbons; energy storage

Funding

  1. Sandia National Laboratory
  2. ONR MURI program [00006766, N00014-09-1-1066]
  3. AFOSR MURI program [FA9550-12-1-0035]
  4. AFOSR [FA9550-09-1-0581]
  5. Chinese Scholarship Council

Ask authors/readers for more resources

A nanocomposite material of SnO2-reduced graphene oxide nanoribbons has been developed. In this composite, the reduced graphene oxide nanoribbons are uniformly coated by nanosized SnO2 that formed a thin layer of SnO2 on the surface. When used as anodes in lithium ion batteries, the composite shows outstanding electrochemical performance with the high reversible discharge capacity of 1,027 mAh/g at 0.1 A/g after 165 cycles and 640 mAh/g at 3.0 A/g after 160 cycles with current rates varying from 0.1 to 3.0 A/g and no capacity decay after 600 cycles compared to the second cycle at a current density of 1.0 A/g. The high reversible capacity, good rate performance and excellent cycling stability of the composite are due to the synergistic combination of electrically conductive reduced graphene oxide nanoribbons and SnO2. The method developed here is practical for the large-scale development of anode materials for lithium ion batteries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available