4.8 Article

Flexible SnS nanobelts: Facile synthesis, formation mechanism and application in Li-ion batteries

Journal

NANO RESEARCH
Volume 6, Issue 1, Pages 55-64

Publisher

TSINGHUA UNIV PRESS
DOI: 10.1007/s12274-012-0281-7

Keywords

tin sulfide; nanobelts; Li-ion battery; morphology preservation

Funding

  1. State Key Project of Fundamental Research for Nanoscience and Nanotechnology [2011CB932401, 2011CBA00500]
  2. National Natural Science Foundation of China [20921001, 21051001]

Ask authors/readers for more resources

[020]-oriented tin sulfide nanobelts with a length/thickness ratio of 100 have been synthesized by a facile hydrothermal method without any surfactants, and the nanobelts have shown good strain-accommodating properties as well as good electrochemical performance as the anode for Li-ion batteries. The formation of the nanobelts results from a precipitation-dissolution-transformation mechanism, and the [020] oriented growth can be ascribed to the {010} facet family having the lowest atomic density. In particular, SnS shows clear Li-Sn alloying/de-alloying reversible reactions in the potential range 0.1-1.0 V. Based on galvanostatic measurements and electrochemical impedance spectroscopy, SnS nanobelts have shown impressive rate performance. The post-cycled SnS nanobelts were completely transformed into metallic tin, and preserved the one-dimensional structure due to their flexibility which accommodates the large volumetric expansion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available