4.8 Review

Viruses and Virus-Like Protein Assemblies-Chemically Programmable Nanoscale Building Blocks

Journal

NANO RESEARCH
Volume 2, Issue 5, Pages 349-364

Publisher

TSINGHUA UNIV PRESS
DOI: 10.1007/s12274-009-9033-8

Keywords

Bionanoparticles; virus; bioconjugation; nanomaterials; bioimaging; drug delivery

Ask authors/readers for more resources

Supramolecular proteins are generated using a limited set of twenty amino acids, but have distinctive functionalities which arise from the sequential arrangement of amino acids configured to exquisite three-dimensional structures. Viruses, virus-like particles, ferritins, enzyme complexes, cellular micro-compartments, and other supramolecular protein assemblies exemplify these systems, with their precise arrangements of tens to hundreds of molecules into highly organized scaffolds for nucleic acid packaging, metal storage, catalysis or sequestering reactions at the nanometer scale. These versatile protein systems, dubbed as bionanoparticles (BNPs), have attracted materials scientists to seek new opportunities with these pre-fabricated templates in a wide range of nanotechnology-related applications. Here, we focus on some of the key modification strategies that have been utilized, ranging from basic protein conjugation techniques to more novel strategies, to expand the functionalities of these multimeric protein assemblies. Ultimately, in combination with molecular cloning and sophisticated chemistries, these BNPs are being incorporated into many applications ranging from functional materials to novel biomedical drug designs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available