4.8 Article

Improved Peptidyl Linkers for Self-Assembly of Semiconductor Quantum Dot Bioconjugates

Journal

NANO RESEARCH
Volume 2, Issue 2, Pages 121-129

Publisher

TSINGHUA UNIV PRESS
DOI: 10.1007/s12274-009-9008-9

Keywords

Semiconductor quantum dot; peptide; DNA; nanocrystal; bioconjugation; iodoacetyl; sulfhydryl; polyhistidine; metal-affinity; fluorescence; fluorescence resonance energy transfer (FRET)

Funding

  1. DTRA
  2. ONR
  3. NRL
  4. NRL-NSI
  5. ASEE through NRL

Ask authors/readers for more resources

We demonstrate improved peptide linkers which allow both conjugation to biomolecules such as DNA and self-assembly with luminescent semiconductor quantum dots. A hexahistidine peptidyl sequence was generated by standard solid phase peptide synthesis and modified with the succinimidyl ester of iodoacetamide to yield a thiol-reactive iodoacetyl polyhistidine linker. The reactive peptide was conjugated to dye-labeled thiolated DNA which was utilized as a model target biomolecule. Agarose gel electrophoresis and fluorescence resonance energy transfer analysis confirmed that the linker allowed the DNA to self-assemble with quantum dots via metal-affinity driven coordination. In contrast to previous peptidyl linkers that were based on disulfide exchange and were thus labile to reduction, the reactive haloacetyl chemistry demonstrated here results in a more stable thioether bond linking the DNA to the peptide which can withstand strongly reducing environments such as the intracellular cytoplasm. As thiol groups occur naturally in proteins, can be engineered into cloned proteins, inserted into nascent peptides or added to DNA during synthesis, the chemistry demonstrated here can provide a simple method for self-assembling a variety of stable quantum dot bioconjugates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available