4.8 Article

Control of Epitaxial BaFe2As2 Atomic Configurations with Substrate Surface Terminations

Journal

NANO LETTERS
Volume 18, Issue 10, Pages 6347-6352

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.8b02704

Keywords

Superconducting T-o BaFe2As2; interfacial atomic structure; surface termination; thin films; heterostructures

Funding

  1. U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES) [DE-FG02-06ER46327]
  2. U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-FG02-07ER46417]
  3. National Science Foundation (NSF) [CHE-1230924]
  4. Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]
  5. DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357]
  6. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-SC0014430]
  7. National Science Foundation [DMR-1306785, DMR-1157490, DMR-1644779]
  8. State of Florida, USA

Ask authors/readers for more resources

Atomic layer controlled growth of epitaxial thin films of unconventional superconductors opens the opportunity to discover novel high temperature superconductors. For instance, the interfacial atomic configurations may play an important role in superconducting behavior of monolayer FeSe on SrTiO3 and other Fe-based superconducting thin films. Here, we demonstrate a selective control of the atomic configurations in Co-doped BaFe2As2 epitaxial thin films and its strong influence on superconducting transition temperatures by manipulating surface termination of (001) SrTiO3 substrates. In a combination of first-principles calculations and high-resolution scanning transmission electron microscopy imaging, we show that Co-doped BaFe2As2 on TiO2-terminated SrTiO3 is a tetragonal structure with an atomically sharp interface and with an initial Ba layer. In contrast, Co-doped BaFe2As2 on SrO-terminated SrTiO3 has a monoclinic distortion and a BaFeO3-x initial layer. Furthermore, the superconducting transition temperature of Co-doped BaFe2As2 ultrathin films on TiO2-terminated SrTiO3 is significantly higher than that on SrO-terminated SrTiO3, which we attribute to shaper interfaces with no lattice distortions. This study allows the design of the interfacial atomic configurations and the effects of the interface on superconductivity in Fe-based superconductors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available