4.8 Article

One-Pot Synthesized Bicontinuous Hierarchical Li3V2(PO4)3/C Mesoporous Nanowires for High-Rate and Ultralong-Life Lithium-ion Batteries

Journal

NANO LETTERS
Volume 14, Issue 2, Pages 1042-1048

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/nl404709b

Keywords

Nanowire; mesoporous structure; hierarchical structure; bicontinuous pathways; lithium-ion batteries; Li3V2(PO4)(3)

Funding

  1. National Basic Research Program of China [2013CB934103, 2012CB933003]
  2. National Natural Science Foundation of China [51272197, 51302203, 51072153]
  3. International Science and Technology Cooperation Program of China [2013DFA50840]
  4. Fundamental Research Funds for the Central Universities [2013-VII-028, 2013-ZD-7]
  5. Students Innovation and Entrepreneurship Training Program [20131049701008]

Ask authors/readers for more resources

Lithium-ion batteries have attracted enormous attention for large-scale and sustainable energy storage applications. Here we present a design of hierarchical Li3V2(PO4)(3)/C mesoporous nanowires via one-pot synthesis process. The mesoporous structure is directly in situ carbonized from the surfactants (CTAB and oxalic acid) along with the crystallization of Li3V2(PO4)(3) without using any hard templates. As a cathode for lithium-ion battery, the Li3V2(PO4)(3)/C mesoporous nanowires exhibit outstanding high-rate and ultralong-life performance with capacity retention of 80.0% after 3000 cycles at 5 C in 3-4.3 V. Even at 10 C, it still delivers 88.0% of its theoretical capacity. The ability to provide this level of performance is attributed to the hierarchical mesoporous nanowires with bicontinuous electron/ion pathways, large electrode electrolyte contact area, low charge transfer resistance, and robust structure stability upon prolonged cycling. Our work demonstrates that the unique mesoporous nanowires structure is favorable for improving the cyclability and rate capability in energy storage applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available