4.8 Article

Strain Engineering of Kapitza Resistance in Few-Layer Graphene

Journal

NANO LETTERS
Volume 14, Issue 2, Pages 819-825

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/nl404182k

Keywords

Strain effect; Kapitza resistance; few-layer graphene; molecular dynamics simulations; vibrational density of states

Funding

  1. Swiss National Supercomputing Centre [s448]

Ask authors/readers for more resources

We demonstrate through molecular dynamics simulations that the Kapitza resistance in few-layer graphene (PLC) can be controlled by applying mechanical strain. For unstrained FLG, the Kapitza resistance decreases with the increase of thickness and reaches an asymptotic value of 6 x 10(-10) m(2)K/W at a thickness about 16 nm. Uniaxial cross-plane strain is found to increase the Kapitza resistance in FLG monotonically, when the applied strain varies from compressive to tensile. Moreover, uniaxial strain couples the in-plane and out-of-plane strain/stress when the surface of FLG is buckled. We find that with a compressive cross-plane stress of 2 GPa, the Kapitza resistance is reduced by about 50%. On the other hand it is almost tripled with a tensile cross-plane stress of 1 GPa. Remarkably, compressive in-plane strain can either increase or reduce the Kapitza resistance, depending on the specific way it is applied. Our study suggests that graphene can be exploited for both heat dissipation and insulation through strain engineering.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available